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I. Abstract 

We learned the theory of low-density parity check (LDPC) code and 

implemented the code. By having several tests, we evaluated the 

performance of LDPC and compared it with the lab we have done before. 

II. Introduction 

All of us are very interested in the previous lab about convolutional code 

simulation. Therefore, we decided to do more research on this topic and 

found a very popular way of error correcting code simulation—LDPC. We 

decided to implement this technique based on the program of previous lab.  

 Understanding the theory behind the code 

 Implementation of the encoder and decoder of LDPC 

 Combine this convolutional code technique along with BPSK, 8PSK and 

16QAM 

 Analyze the result with previous lab work 

III. System model 

 

IV. Theory and Principle 

The Low-Density Parity Check code (LDPC code) is a kind of linear error 

correcting code. Basically it is a block code with a low-density parity check 

matrix H. The “low density” here means that there are only a few ones in the 

matrix H, and the other elements of H are all zeros. The LDPC code has the 

following advantages. First, it can achieve performance close to the Shannon 

limit provided that the codeword length is long. Second, it has a lower decoding 

complexity than that of the Turbo code. The commonly used decoding algorithm 

for LDPC is “belief propagation”, which is parallelizable and can be accomplished 
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at significantly greater speeds than the decoding of Turbo codes. Third, the 

decoding algorithm is verifiable in the sense that decoding to a correct codeword 

is a detectable event.  

 Encoding 

To get a (n, j, k) LDPC code, we can generate an m by n parity check matrix H 

(where m = n - k) and derive the generator matrix as follows: 

1. Generate m x n matrix H by setting all of the elements to zero. Flipping 

the first k elements to 1 in the first row and the k+1 to 2k in the second 

and do this for the first m/j rows. Ex : (n, j, k)=(20,3,4) 

 Fig. 1 

The rest parts of the rows are just the permutation of the columns of the 

first part.  

2. Shift the columns of H such that the right hand square sub-matrix of H 

has full rank, i.e. H = [A|B], where A is an m by k matrix, B is an m by m 

square matrix. Shift the columns of H to make B has full rank. 

3. Use row operations to convert H to systematic form Hsys. Then derive the 

corresponding generator matrix G: 

𝐻𝑠𝑦𝑠 = [𝑃|𝐼𝑚×𝑚] 

G = [𝐼𝑘×𝑘|𝑃
𝑇] 

4. For a length-k information sequence s, the corresponding length-n coded 

word t can be calculated by: 

 =   𝑇          

 Decoding 

The decoding algorithm iteratively computes the distributions of variables 

in graph-based model. Figure 2 shows the graph-based model. The 
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information of the probability of every variable is exchanged between the 

check nodes (lower blocks in fig. 2) and variable nodes (upper nodes in fig. 

2). In our experiments, we used log-likelihood ratio (LLR) as the information 

of probability. Log-likelihood ratio (LLR): 

L 𝑐𝑖 = log  
Pr 𝐶𝑖 = 0 | 𝑦𝑖 

Pr 𝐶𝑖 = 1 | 𝑦𝑖 
  

Where c represents the code and y represents the received signal.  

 Fig. 2 

By iteratively computing LLR between nodes, we can get the convergent 

result.  

a. L(𝑟𝑖𝑗) =  𝑡𝑎𝑛ℎ−1 ∏  anh  
1

2
𝐿 𝑞𝑖′𝑗  𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}   

b. L(𝑞𝑖𝑗) =  L 𝑐𝑖 + ∑ L(𝑟𝑖𝑗′)𝑗′∈𝐶𝑜𝑙[𝑖]\{𝑗}   

After several iterations,  

𝐿𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑐𝑖 =  L 𝑐𝑖 + ∑ 𝐿 𝑟𝑖𝑗′ 
𝑗′∈𝐶𝑜𝑙[𝑖]
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V. Results 

First, we transmit random data to test the BER characteristics of LDPC code. 

We plot the result as the BER curves below. 

1. Comparison with Other’s work 

Fig. 3 

Figure 3 is a simulation having H with size =  56 × 451 . 

Fig. 4 
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Reference: 

http://www.mathworks.com/ma

tlabcentral/fileexchange/28070-t

he-parity-check-matrix-of-ieee-8

02-16e-ldpc-with-the-size-22564

512/content/LDPC_codes_IEEE8

02_16e/LDPC_codes_IEEE802_16

e_4512_d5_H.m 

http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
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2. Comparison with CC and BPSK without code 

 Fig. 5 

3. LDPC Code Simulation with Different Numbers of Iterations 

Fig. 6 
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4. Image Transmission under Different SNR 

In order to visualize the BER and get some insight of the error distribution, 

we transmit the Lena image (BMP format; 512x512 pixels). The results are 

shown below. 

 

SNR = 0dB 

 

SNR = 0.3dB 

 

SNR = 0.6dB 

 

SNR = 0.9dB 
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SNR = 1.2dB 

 

SNR = 1.5dB 

 

SNR = 1.8dB 

 

SNR = 2.1dB 
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5. Image Transmission with/without LDPC Code 

a. SNR = 0dB 

 

Ordinary BPSK 

 

BPSK with LDPC code 

 

b. SNR = 0.9dB 

 

Ordinary BPSK 

 

BPSK with LDPC code 
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c. SNR = 1.2dB 

 

Ordinary BPSK 

 

BPSK with LDPC code 

 

d. SNR = 1.8dB 

 

Ordinary BPSK 

 

BPSK with LDPC code 

 

  



10 
 

VI. Conclusions 

First of all, we need to verify our simulation. We found a reliable 

simulation result on the internet. The curve is almost consistent as our result. 

We can see the sharp waterfall, the important characteristic of LDPC code. 

Therefore, we can convince ourselves that our implementation is correct. 

In the second part, we put the BER curves together with the BER curves 

in previous labs. We can see that LDPC encoded BPSK performs much better 

than the ordinary BPSK and BPSK with CC in most of the SNR values. At low 

SNR, the energy will disperse into code with twice length. Also, if there exists 

a lot of error in the signal, there will be not enough correct bits for correcting 

the error. Due to the two main reasons, LDPC code performs worse when 

SNR is really low. As SNR goes high, LDPC code shows its power and has 

extremely better result.  

In the third part, we can see that different times of iterations can cause 

different result of BER. The main idea of LDPC code is that the probability of 

every bit being 1 will close to 1 or 0 after several iterations. If we do is few 

times, the result will not converge to an ideal value. In our test, the 

simulation with more times of iterations has better results of BER. However, 

it converges at about 30 iterations, so we need only 30 iterations in the rest 

of our simulations. 

In the fourth part, we can see the image gets clearer as the SNR goes high. 

Interestingly, we discover that the corrupted image pixels tend to be in the 

same row, especially in the image of SNR = 0.9 and SNR = 1.2. We guess this 

is due to the fact that we segment the data and encode them separately. If the 

received segment contains some large error, the error propagates in LDPC 

algorithm. Thus the decoded segment would contain lots off error bits. 

Because BMP format takes the pixels row by row and our segmenting 

algorithm segment the data as original order, we found the above 

observation. 

In the last part, we compare the LDPC encoded BPSK and ordinary BPSK 

on image transmission. We found a consistent result as the random bit 

transmission: in low SNR channel, LDPC has poor performance; in high SNR 

channel, LDPC has significantly better quality. We also can see the different 
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error distribution characteristics. The ordinary BPSK error occurs uniformly 

randomly, on the other hand, LDPC error tends to concentrate in the same 

row. If we can shuffle the data before LDPC transmission and recover it back 

at the receiver, we may gain some visual quality on the received image. 

VII. Reference 

 http://en.wikipedia.org/wiki/Low-density_parity-check_code 

 https://sites.google.com/site/zhenglu1986/implementation-of-ldpc-co

des-in-labview 

 http://www.jatit.org/volumes/Vol38No1/14Vol38No1.pdf 

 http://www.telecom.tuc.gr/~alex/papers/ryan.pdf 

VIII. Team member 

 
陳彥均         莊皓翔         蔡秉珈 

IX. Source code 

We use mostly C++ to implement on Linux OS with g++ as the compiler 

together with small portion of MATLAB. 

The source in “Source Code” file contains three parts. The first part is to 

find a good matrix H for parity check and the generator G for the encoder. We 

tried to construct one by ourselves but failed. Thus we decided to use the 

matrix for LDPC in IEEE 802.16e. Luckily we found the matrix in txt 

format.(802.16eH.txt) Then we use MATLAB to parse it and compute the 

http://en.wikipedia.org/wiki/Low-density_parity-check_code
https://sites.google.com/site/zhenglu1986/implementation-of-ldpc-codes-in-labview
https://sites.google.com/site/zhenglu1986/implementation-of-ldpc-codes-in-labview
http://www.jatit.org/volumes/Vol38No1/14Vol38No1.pdf
http://www.telecom.tuc.gr/~alex/papers/ryan.pdf
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required G and output them together in our desire format as binary 

files.(H.matrix, G.matrix) In the second part, we write the encoder and 

decoder using C++. We define them as two solver class in ldpcCode.h and 

ldpcCode.cpp. The work is to parse the matrix file and perform the encoding 

and decoding operation. The last part is to unify the source code to the 

previous work of lab exercises. We choose to use inheritance to strengthen 

the transmitter and receiver class with the LDPC encode ability. The 

implantation details are omitted here.  

Finally, we can perform simulation using the class in commSystem.h. The 

sample codes are ldpc_ber.cpp and ldpc_image.cpp. The Makefile is also 

included. Simply type mage and get the two executable ldpc_ber.exe and 

ldpc_image.exe for simulation. 

X. Appendix 

The result in this report is quite different from that in our demo at 6/25. The 

BER here is much lower, and we can see that the curve moves left. It is due to 

the correction of our code. In our decoder, one variable should have the type 

“double”, but we previously mistook it as “integer” and caused some error. 

The edition in this report is the correct one. 


