
1

Communication Lab 2013 Final Report
Low-Density Parity Check Code

Group 3 陳彥均 蔡秉珈 莊皓翔

I. Abstract

We learned the theory of low-density parity check (LDPC) code and

implemented the code. By having several tests, we evaluated the

performance of LDPC and compared it with the lab we have done before.

II. Introduction

All of us are very interested in the previous lab about convolutional code

simulation. Therefore, we decided to do more research on this topic and

found a very popular way of error correcting code simulation—LDPC. We

decided to implement this technique based on the program of previous lab.

 Understanding the theory behind the code

 Implementation of the encoder and decoder of LDPC

 Combine this convolutional code technique along with BPSK, 8PSK and

16QAM

 Analyze the result with previous lab work

III. System model

IV. Theory and Principle

The Low-Density Parity Check code (LDPC code) is a kind of linear error

correcting code. Basically it is a block code with a low-density parity check

matrix H. The “low density” here means that there are only a few ones in the

matrix H, and the other elements of H are all zeros. The LDPC code has the

following advantages. First, it can achieve performance close to the Shannon

limit provided that the codeword length is long. Second, it has a lower decoding

complexity than that of the Turbo code. The commonly used decoding algorithm

for LDPC is “belief propagation”, which is parallelizable and can be accomplished

Signal
Source

(m bits)

LDPC
Encoder
(n bits)

+ noise

BPSK
QPSK
8PSK

16QAM

LDPC
Decoder

Received
Signal

2

at significantly greater speeds than the decoding of Turbo codes. Third, the

decoding algorithm is verifiable in the sense that decoding to a correct codeword

is a detectable event.

 Encoding

To get a (n, j, k) LDPC code, we can generate an m by n parity check matrix H

(where m = n - k) and derive the generator matrix as follows:

1. Generate m x n matrix H by setting all of the elements to zero. Flipping

the first k elements to 1 in the first row and the k+1 to 2k in the second

and do this for the first m/j rows. Ex : (n, j, k)=(20,3,4)

 Fig. 1

The rest parts of the rows are just the permutation of the columns of the

first part.

2. Shift the columns of H such that the right hand square sub-matrix of H

has full rank, i.e. H = [A|B], where A is an m by k matrix, B is an m by m

square matrix. Shift the columns of H to make B has full rank.

3. Use row operations to convert H to systematic form Hsys. Then derive the

corresponding generator matrix G:

𝐻𝑠𝑦𝑠 = [𝑃|𝐼𝑚×𝑚]

G = [𝐼𝑘×𝑘|𝑃
𝑇]

4. For a length-k information sequence s, the corresponding length-n coded

word t can be calculated by:

 = 𝑇

 Decoding

The decoding algorithm iteratively computes the distributions of variables

in graph-based model. Figure 2 shows the graph-based model. The

3

information of the probability of every variable is exchanged between the

check nodes (lower blocks in fig. 2) and variable nodes (upper nodes in fig.

2). In our experiments, we used log-likelihood ratio (LLR) as the information

of probability. Log-likelihood ratio (LLR):

L 𝑐𝑖 = log
Pr 𝐶𝑖 = 0 | 𝑦𝑖

Pr 𝐶𝑖 = 1 | 𝑦𝑖

Where c represents the code and y represents the received signal.

 Fig. 2

By iteratively computing LLR between nodes, we can get the convergent

result.

a. L(𝑟𝑖𝑗) = 𝑡𝑎𝑛ℎ−1 ∏ anh
1

2
𝐿 𝑞𝑖′𝑗 𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

b. L(𝑞𝑖𝑗) = L 𝑐𝑖 + ∑ L(𝑟𝑖𝑗′)𝑗′∈𝐶𝑜𝑙[𝑖]\{𝑗}

After several iterations,

𝐿𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑐𝑖 = L 𝑐𝑖 + ∑ 𝐿 𝑟𝑖𝑗′
𝑗′∈𝐶𝑜𝑙[𝑖]

4

V. Results

First, we transmit random data to test the BER characteristics of LDPC code.

We plot the result as the BER curves below.

1. Comparison with Other’s work

Fig. 3

Figure 3 is a simulation having H with size = 56 × 451 .

Fig. 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BPSK simulation

Our result

Reference:

http://www.mathworks.com/ma

tlabcentral/fileexchange/28070-t

he-parity-check-matrix-of-ieee-8

02-16e-ldpc-with-the-size-22564

512/content/LDPC_codes_IEEE8

02_16e/LDPC_codes_IEEE802_16

e_4512_d5_H.m

http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m
http://www.mathworks.com/matlabcentral/fileexchange/28070-the-parity-check-matrix-of-ieee-802-16e-ldpc-with-the-size-22564512/content/LDPC_codes_IEEE802_16e/LDPC_codes_IEEE802_16e_4512_d5_H.m

5

2. Comparison with CC and BPSK without code

 Fig. 5

3. LDPC Code Simulation with Different Numbers of Iterations

Fig. 6

0 1 2 3 4 5 6 7 8 9
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E

R
BPSK Simulation

Without code

With CC

With LDPC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

LDPC code with different # of iterations

10 iterations

20 iterations

25 iterations

30 iterations

35 iterations

6

4. Image Transmission under Different SNR

In order to visualize the BER and get some insight of the error distribution,

we transmit the Lena image (BMP format; 512x512 pixels). The results are

shown below.

SNR = 0dB

SNR = 0.3dB

SNR = 0.6dB

SNR = 0.9dB

7

SNR = 1.2dB

SNR = 1.5dB

SNR = 1.8dB

SNR = 2.1dB

8

5. Image Transmission with/without LDPC Code

a. SNR = 0dB

Ordinary BPSK

BPSK with LDPC code

b. SNR = 0.9dB

Ordinary BPSK

BPSK with LDPC code

9

c. SNR = 1.2dB

Ordinary BPSK

BPSK with LDPC code

d. SNR = 1.8dB

Ordinary BPSK

BPSK with LDPC code

10

VI. Conclusions

First of all, we need to verify our simulation. We found a reliable

simulation result on the internet. The curve is almost consistent as our result.

We can see the sharp waterfall, the important characteristic of LDPC code.

Therefore, we can convince ourselves that our implementation is correct.

In the second part, we put the BER curves together with the BER curves

in previous labs. We can see that LDPC encoded BPSK performs much better

than the ordinary BPSK and BPSK with CC in most of the SNR values. At low

SNR, the energy will disperse into code with twice length. Also, if there exists

a lot of error in the signal, there will be not enough correct bits for correcting

the error. Due to the two main reasons, LDPC code performs worse when

SNR is really low. As SNR goes high, LDPC code shows its power and has

extremely better result.

In the third part, we can see that different times of iterations can cause

different result of BER. The main idea of LDPC code is that the probability of

every bit being 1 will close to 1 or 0 after several iterations. If we do is few

times, the result will not converge to an ideal value. In our test, the

simulation with more times of iterations has better results of BER. However,

it converges at about 30 iterations, so we need only 30 iterations in the rest

of our simulations.

In the fourth part, we can see the image gets clearer as the SNR goes high.

Interestingly, we discover that the corrupted image pixels tend to be in the

same row, especially in the image of SNR = 0.9 and SNR = 1.2. We guess this

is due to the fact that we segment the data and encode them separately. If the

received segment contains some large error, the error propagates in LDPC

algorithm. Thus the decoded segment would contain lots off error bits.

Because BMP format takes the pixels row by row and our segmenting

algorithm segment the data as original order, we found the above

observation.

In the last part, we compare the LDPC encoded BPSK and ordinary BPSK

on image transmission. We found a consistent result as the random bit

transmission: in low SNR channel, LDPC has poor performance; in high SNR

channel, LDPC has significantly better quality. We also can see the different

11

error distribution characteristics. The ordinary BPSK error occurs uniformly

randomly, on the other hand, LDPC error tends to concentrate in the same

row. If we can shuffle the data before LDPC transmission and recover it back

at the receiver, we may gain some visual quality on the received image.

VII. Reference

 http://en.wikipedia.org/wiki/Low-density_parity-check_code

 https://sites.google.com/site/zhenglu1986/implementation-of-ldpc-co

des-in-labview

 http://www.jatit.org/volumes/Vol38No1/14Vol38No1.pdf

 http://www.telecom.tuc.gr/~alex/papers/ryan.pdf

VIII. Team member

陳彥均 莊皓翔 蔡秉珈

IX. Source code

We use mostly C++ to implement on Linux OS with g++ as the compiler

together with small portion of MATLAB.

The source in “Source Code” file contains three parts. The first part is to

find a good matrix H for parity check and the generator G for the encoder. We

tried to construct one by ourselves but failed. Thus we decided to use the

matrix for LDPC in IEEE 802.16e. Luckily we found the matrix in txt

format.(802.16eH.txt) Then we use MATLAB to parse it and compute the

http://en.wikipedia.org/wiki/Low-density_parity-check_code
https://sites.google.com/site/zhenglu1986/implementation-of-ldpc-codes-in-labview
https://sites.google.com/site/zhenglu1986/implementation-of-ldpc-codes-in-labview
http://www.jatit.org/volumes/Vol38No1/14Vol38No1.pdf
http://www.telecom.tuc.gr/~alex/papers/ryan.pdf

12

required G and output them together in our desire format as binary

files.(H.matrix, G.matrix) In the second part, we write the encoder and

decoder using C++. We define them as two solver class in ldpcCode.h and

ldpcCode.cpp. The work is to parse the matrix file and perform the encoding

and decoding operation. The last part is to unify the source code to the

previous work of lab exercises. We choose to use inheritance to strengthen

the transmitter and receiver class with the LDPC encode ability. The

implantation details are omitted here.

Finally, we can perform simulation using the class in commSystem.h. The

sample codes are ldpc_ber.cpp and ldpc_image.cpp. The Makefile is also

included. Simply type mage and get the two executable ldpc_ber.exe and

ldpc_image.exe for simulation.

X. Appendix

The result in this report is quite different from that in our demo at 6/25. The

BER here is much lower, and we can see that the curve moves left. It is due to

the correction of our code. In our decoder, one variable should have the type

“double”, but we previously mistook it as “integer” and caused some error.

The edition in this report is the correct one.

